Formleg mál og reiknanleiki

Magni Þór Birgisson

skil 3 Halldór Guðjónsson

1 Exercise 1.25 bls 88

$$\operatorname{Let} \Sigma_3 = \left\{ \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right], \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right], ..., \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right] \right\}$$

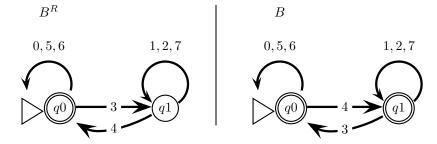
 \sum_3 contains all size 3 columns of 0s and 1s. A string of symbols in \sum_3 gives three rows of 0s and 1s. Consider each row to be a binary number an let $B = \{w \in \sum_3^* | \text{the bottom row of } w \text{ is the sum of top two ros} \}$.

For example,
$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \in B$$
, but $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \notin B$

Show that B is regular. (Hint: Working with B^R is easier You may assume the result claimed in Proble 1.24.)

$$0 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, 1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, 2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, 3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix},$$

$$4 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, 5 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, 6 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, 7 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$



2 Exercise 2.4 bls 120

Give context-free grammar the generate the following languages. In all parts the alphabet \sum is $\{0,1\}$.

a) $\{w|w \text{ contains at least three 1s}\}$

$$RE = (0 \cup 1)^* \circ 1 \circ (0 \cup 1)^* \circ 1 \circ (0 \cup 1)^* \circ 1 \circ (0 \cup 1)^*$$

$$S \Rightarrow A1A1A$$
$$A \Rightarrow AA|1|0$$

d) $\{w|w$ the length of w is odd an its middle symbol is $0\}$

2

$$S \Rightarrow ASA|0$$

$$A \Rightarrow 0|1$$